
CS 227, Handout #2Nayak

Greedy local search

procedure GenSAT(Σ)

for   i = 1 to  Max-tries

T = initial (Σ)

for   j = 1 to  Max-flips

if   T satisfies Σ  then  return  T

else  Poss-flips = hill-climb(Σ , T)

V = pick(Poss-flips)

T = T with V’s assignment flipped

endif

endfor

endfor
return  “No satisfying assignment found”

end GenSAT



CS 227, Handout #2Nayak

GSAT

• initial  : returns a randomly generated truth assignment

• hill-climb : returns variables whose truth assignment if flipped
give the greatest increase in the number of satisfied clauses

– called the score of a variable

– greatest increase can be zero (sideways moves) or
negative (uphill moves)

• pick : returns one of the variables at random



CS 227, Handout #2Nayak

GSAT performance

• Table 1 from Selman et al. 1992



CS 227, Handout #2Nayak

Sideways moves

• Table 4 from Selman et al. 1992



CS 227, Handout #2Nayak

Variants of GSAT

• Is greediness important?

• Is randomness important?

– in picking between equally good variables?

– in picking the initial assignment for each try?

• Is memory useful?



CS 227, Handout #2Nayak

Greediness

• TSAT: returns variables that increase the score the least, or if
no variables increase the score then all sideways moves, or if
no sideways moves then all moves

• TSAT performance is comparable to GSAT

• …but hill-climbing is important



CS 227, Handout #2Nayak

Randomness

• Is randomness important in picking variables?

– DSAT: picks between equally good variables in a
deterministic but fair way (variables are picked in a cyclic
order)

– DSAT outperforms GSAT

– …but fairness is important

• Is randomness important in the generating initial assignments?

– VSAT: generates initial assignments in a deterministic
order, but maximizes variance between successive tries

– VSAT comparable to GSAT

– …but variance between successive tries is important



CS 227, Handout #2Nayak

Memory

• HSAT: picks the variable flipped longest ago in this try

• HSAT significantly outperforms GSAT and DSAT

• Tabu lists in combinatorial optimization



CS 227, Handout #2Nayak

Percent of problems solved vs total
flips
• Figure 1 from Gent and Walsh 1993



CS 227, Handout #2Nayak

Optimal value of Max-flips

• Figure 2 from Gent and Walsh 1993



CS 227, Handout #2Nayak

GSAT with random walk

• With probability p, pick a variable occurring in some
unsatisfied clause and flip its truth assignment

• With probability 1 – p, follow the standard GSAT scheme, i.e.,
make the best possible local move



CS 227, Handout #2Nayak

Comparing noise strategies

• Table 1 from Selman, Kautz, and Cohen 1994



CS 227, Handout #2Nayak

WalkSAT

• initial : same as GSAT, i.e., random assignment

• hill-climb :

– pick an unsatisfied clause

– with probability p return variables with smallest break count

• break count : # of clauses unsatisfied by flip

– with probability 1 – p return all variables in clause

• pick : same as GSAT, i.e., pick randomly

• p must be tuned, but 0.5 works well in most cases

• Max-flips is usually O(N2), but Max-tries is usually 10 - 20.



CS 227, Handout #2Nayak

Davis-Putnam

function DP(Σ , P)

Unit propagate Σ
if a contradiction is discovered then  return  false

else if all variables are valued then  return  true

else
Let x be some unvalued variable

return  DP(Σ ∪  {x}, P)  or DP(Σ ∪  {¬x}, P)

endif
end DP



CS 227, Handout #2Nayak

Branch variable selection heuristics

Key idea: Prefer variables that would cause a large number of
unit propagations

• Estimate the number of unit propagations caused by assigning
a variable true and assigning it false

• Combine the two estimates to give a score for the variable



CS 227, Handout #2Nayak

MOM’s heuristic

• Select variables that have the Maximum Occurrence in clauses
of Minimum length

• For each variable, x, incrementally keep track of

– pc(x) : number of binary clauses in which x occurs
positively

– nc(x) : number of binary clauses in which x occurs
negatively

• Score variables by combining the nc and pc values

– e.g., score(x) = pc(x) * nc(x) * 1024 + pc(x) + nc(x) + 1



CS 227, Handout #2Nayak

Unit propagation heuristic

• For each variable, x, explicitly compute

– up+(x) : actual number of unit propagations that result from
assigning x to be true

– up-(x) : actual number of unit propagations that result from
assigning x to be false

• Combine scores as before



CS 227, Handout #2Nayak

Combined heuristics

• Use MOM’s heuristic to rank variables

• Compute unit propagation heuristic for top k variables

– e.g., k = N - 21 * vars_valued

– Improved variations from [Li & Anbulagan IJCAI 97]


